Button Input:
On/off state change

Living with the Lab
Gerald Recktenwald
Portland State University
gerry@pdx.edu

User Input features of the fan

« Potentiometer for speed control
+ Continually variable input makes sense for speed control
+ Previously discussed
« Start/stop
+» Could use a conventional power switch
+ Push button (momentary) switch
* Lock or limit rotation angle

+ Button click to hold/release fan in one position
+» Potentiometer to set range limit

Conventional on/off switch

Basic light switch or rocker switch
+» Makes or breaks connection to power
+» Switch stays in position: On or Off
+» Toggle position indicates the state
+» NOT in the Arduino Inventors Kit

Image from sparkfun.com Image from lowes.com

How does a button work?

* Simple switch schematic
 Use DMM to measure open/closed circuit

 Map the pin states

Measure Open and Closed Circuits

Top View

o
0O

O
O

Bottom View
2 5 i 3
1 T4

Connect
Pins

Measured Resistance (Q)

When not
pressed

When pressed

1and 2

1and 3

1and 4

2 and 3

Measure Open and Closed Circuits

Data from Measurements:

Connect
Pins

Measured Resistance (Q)

When not
pressed

When pressed

1and 2

1and 3

1and 4

2 and 3

1

2

When not pressed

Sketch Connections:

Draw lines between connectors

T

]

O O
O O

:|:|4

-3

Top View

O O
0.0

d5

0O

2

0334

Oj:l3

When pressed

Bottom View
2 4 g 3
1 T4

Push Button Switches

A momentary button is a “Biased Switch”

Pushing the button changes state

State is reversed (return to biased position) when button is

released

Two types

- NO: normally open

- NC: normally closed

Normally Open

1

—0

o—

Normally Closed

AQJ_’f

Momentary or push-button switches

* Normally open
+ electrical contact is made when button is pressed

* Normally closed
+ electrical contact is broken when button is pressed

* Internal spring returns button to its un-pressed state

5

Open Closed Image from sparkfun.com

Putting buttons into action

1. Build the circuit: same one is used for all examples
a. Test with LED on/off
D. LED is only controlled by the button, not by Arduino code

2. Create a "wailt to start” button
a. Simplest button implementation
D. Execution is blocked while waiting for a button click

3. Use an interrupt handler

a. Most sophisticated: Don’t block execution while waiting for
button input

D. Most sophisticated: Requires good understanding of coding
C. Requires “de-bouncing”
d. Not too hard to use as a black box

Momentary Button and LED Circuit

Digital input with a pull-down
resistor

+» When switch is open (button not
pressed):
» Digital input pin is tied to ground
» No current flows, so there is no voltage
difference from input pin to ground
» Reading on digital input is LOW
+» When switch Is closed (button is
pressed):

» Current flows from 5V to ground, causing
LED to light up.

» The 10k resistor limits the current draw by
the input pin.
» The 330Q2 resistor causes a large voltage

drop between 5V and ground, which

causes the digital input pin to be closer to
E\/

5V

LED /77

) Push-button
switch

330 O Dlgltal
iInput pin

10 kQ

Technical Note

Usually we do not include an LED directly in the button
circuit. The following diagrams show plan button circuits
with pull-up and pull-down resistors. In these
applications, the pull-up or pull-down resistors should be
10k. Refer to Lady Ada Tutorial #5:

+ http://lwww.ladyada.net/learn/arduino/lesson5.html

5V 5V
Pull-u LED s
resist(?r' 10K 1~
) 330 O : I_ stl\J/iStQF]bUtton
Digital
W\l Pull-down
| resistor: 3300 Digital
Push-button input pin
I switch 10 kQ §

Programs for the LED/Button Circuit

1. Continuous monitor of button state
+ Program is completely occupied by monitoring the button
+» Used as a demonstration — not practically useful

4. All three programs use the same electrical circuit

Continuous monitor of button state

Int button_pin = 4; // pin used to read the button

void setup() {
pinMode(button_pin, INPUT);
Serial.begin(9600); // Button state is sent to host

}

void loop() { LED /%
Int button; | Push-oution
button = digitalRead(button_pin);

. put pin
If (button == HIGH) { 0@ =

}Sleria{l-println("on"); Serial monitor shows =
else .
Serial.printin("off"); > a COn:[‘mU’(’)US ftreflm
} of “on” or "off

}
This program does not control the LED

Programs for the LED/Button Circuit

2. Walit for button input
+ Blocks execution while waiting
+» May be useful as a start button

4. All three programs use the same electrical circuit

Walit for button input

Int button_pin = 4; // pin used to read the button

void setup() {
Int start_click = LOW, I/ Initial state: no click yet
pinMode(button_pin, INPUT);
Serial.begin(9600);

while (' !start_click) {
start_click = digitalRead(button_pin);
Serial.printin("Waiting for button press"),

}
} .
Same loop() function
void loop() { : :
ibiter as in the preceding

sketch
button = digitalRead(button_pin);
If (button == HIGH) {
Serial.printin("on");
} else {
Serial.printin("off");

}
}

while loop
continues as long
as start_click is
FALSE

By

LED 7%
Push-butian
F"mmnm

input pin
1um§

Programs for the LED/Button Circuit

3. Interrupt Handler
+» Most versatile
+» Does not block execution
» Interrupt Is used to change a flag that indicates state
+» Regular code in loop function checks the sate of the flag

4. All three programs use the same electrical circuit

Interrupt handler for button

int button_interrupt = 0; // Interrupt O is on pin 2 !!
int toggle_on = false; /[Button click switches state

void setup() {
Serial.begin(9600);
attachinterrupt(button_interrupt, handle_click, RISING); // Register handler

}

void loop() {
if (toggle_on) {
Serial.printin("on");
} else {
Serial.printin("off");
}
}

void handle_click() {

static unsigned long last_interrupt_time = O; /[Zero only at start
unsigned long interrupt_time = millis(); // Read the clock

if (interrupt_time - last_interrupt_time > 200) { // Ignhore when < 200 msec
toggle on = 'toggle on;

}

last_interrupt_time = interrupt_time;

INnput

B\

LED S7 %
| Push-bution
switch

g Dl

input pin
10 kL) g

Interrupt handler for button input

int button_interrupt = 0; // Interrupt O is on pin 2 !!
int toggle_on = false; /[Button click switches state .
Interrupt handler must be registered when program
void setup() { starts
Serial.begin(9600);
attachinterrupt(button_interrupt, handle_click, RISING); // Register handler

buttor}1_interrupt IS the ID)o'r \
number of the interrupt. It must be A RISING interrupt occurs when the
Oorl E pin changes from LOW to HIGH
} else {
Serial.printin("off"); The interrupt handler,
}} handle_click, is a user-written
function that is called when an
void handle_click() { Interrupt is detected
static unsigned long last_interrupt_time = O; /[Zero only at start
unsigned long interrupt_time = millis(); // Read the clock

if (interrupt_time - last_interrupt_time > 200) { // Ignhore when < 200 msec
toggle on = 'toggle on;

}

last_interrupt_time = interrupt_time;

Interrupt handler for button input

int button_interrupt = 0; // Interrupt O is on pin 2 !!

int toggle_on = false; /[Button click switches state _ _
toggle_on is a global variable that

remembers the “state”. It is either true or
e click, RISING): // RegistatHgilt OF 0).

void setup() {
Serial.begin(9600);
attachinterrupt(button_interrupt,

}
void loop() {
It (toggle_on) { The loop() function only checks the
Serial.printin("on"); tate of t | Th | f
}else { state O og_g e_op. e_va ue o
Serial.printIn("off"); toggle on is set in the interrupt
}} handler, handle_click.
void handle_click() {
static unsigned long last_interrupt_time = O; /[Zero only at start
unsigned long interrupt_time = millis(); // Read the clock

if (interrupt_time - last_interrupt_timeg,> 200) { // Ignore when < 200 msec
toggle on = !'toggle on; : :
} The value of toggle_on is flipped only

when a true interrupt even occurs. De-

last_interrupt_time = interrupt_time; bouncing is described in the next slide.

Interrupt handler for button input

int button_interrupt = 0; // Interrupt O is on pin 2 !!
int toggle_on = false; /[Button click switches state

void setup() {
Serial.begin(9600);
attachinterrupt(button_interrupt, handle_click, RISING); // Register handler

} . . .
Value of a static variable is always

retained _
Use long: the time value In

milliseconds can become
large

void loop() {
if (toggle_on) {
Serial.printin("on");
} else {
Serial.printin("off");

} Clock time when current interrupt
} OCcurs
void handle c/ Ignore events that occur in less than

200 msec from each other. These

static unsigned long,l#St_interrupt_time = 0O; Il Zero only at st - -
unsigned long interfupt_time = millis(); /l Read the clo e “kely to be mechanical bounces.

if (interrupt_time - last_interrupt_time > 200) { // Ignhore when < 200 msec
toggle on = 'toggle on;
}
. Save current time as the new “last”
last_interrupt_time = interrupt_time;

} time

Other references

Ladyada tutorial

+ EXcellent and detailed
+ http://www.ladyada.net/learn/arduino/lesson5.html

Arduino reference

+» Minimal explanation
> http://www.arduino.cc/en/Tutorial/Button

+ Using Interrupts
> http://www.uchobby.com/index.php/2007/11/24/arduino-interrupts/
> http://www.arduino.cc/en/Reference/Attachinterrupt

