
Button Input:

On/off state change
Living with the Lab

Gerald Recktenwald

Portland State University

gerry@pdx.edu

LWTL: Button Input 2

User input features of the fan

• Potentiometer for speed control

❖ Continually variable input makes sense for speed control

❖ Previously discussed

• Start/stop

❖ Could use a conventional power switch

❖ Push button (momentary) switch

• Lock or limit rotation angle

❖ Button click to hold/release fan in one position

❖ Potentiometer to set range limit

LWTL: Button Input 3

Conventional on/off switch

Basic light switch or rocker switch

❖ Makes or breaks connection to power

❖ Switch stays in position: On or Off

❖ Toggle position indicates the state

❖ NOT in the Arduino Inventors Kit

Image from lowes.comImage from sparkfun.com

LWTL: Button Input

How does a button work?

• Simple switch schematic

• Use DMM to measure open/closed circuit

• Map the pin states

LWTL: Button Input

Measure Open and Closed Circuits

Measured Resistance (Ω)

Connect
Pins

When not
pressed When pressed

1 and 2

1 and 3

1 and 4

2 and 3

LWTL: Button Input

Measure Open and Closed Circuits

Measured Resistance (Ω)

Connect
Pins

When not
pressed When pressed

1 and 2

1 and 3

1 and 4

2 and 3

Sketch Connections:Data from Measurements:

LWTL: Button Input

Push Button Switches

• A momentary button is a “Biased Switch”

• Pushing the button changes state

• State is reversed (return to biased position) when button is
released

• Two types

• NO: normally open

• NC: normally closed

LWTL: Button Input 8

• Normally open

❖ electrical contact is made when button is pressed

• Normally closed

❖ electrical contact is broken when button is pressed

• Internal spring returns button to its un-pressed state

Momentary or push-button switches

Image from sparkfun.com

LWTL: Button Input 9

Putting buttons into action

1. Build the circuit: same one is used for all examples

a. Test with LED on/off

b. LED is only controlled by the button, not by Arduino code

2. Create a “wait to start” button

a. Simplest button implementation

b. Execution is blocked while waiting for a button click

3. Use an interrupt handler

a. Most sophisticated: Don’t block execution while waiting for

button input

b. Most sophisticated: Requires good understanding of coding

c. Requires “de-bouncing”

d. Not too hard to use as a black box

LWTL: Button Input 10

Digital input with a pull-down

resistor

❖ When switch is open (button not

pressed):

‣ Digital input pin is tied to ground

‣ No current flows, so there is no voltage

difference from input pin to ground

‣ Reading on digital input is LOW

❖ When switch is closed (button is

pressed):

‣ Current flows from 5V to ground, causing

LED to light up.

‣ The 10k resistor limits the current draw by

the input pin.

‣ The 330Ω resistor causes a large voltage

drop between 5V and ground, which

causes the digital input pin to be closer to

5V.

Momentary Button and LED Circuit

LWTL: Button Input 11

Technical Note

Usually we do not include an LED directly in the button

circuit. The following diagrams show plan button circuits

with pull-up and pull-down resistors. In these

applications, the pull-up or pull-down resistors should be

10k. Refer to Lady Ada Tutorial #5:

❖ http://www.ladyada.net/learn/arduino/lesson5.html

Pull-up

resistor:

Pull-down

resistor:

LWTL: Button Input 12

Programs for the LED/Button Circuit

1. Continuous monitor of button state

❖ Program is completely occupied by monitoring the button

❖ Used as a demonstration — not practically useful

2. Wait for button input

3. Interrupt Handler

4. All three programs use the same electrical circuit

LWTL: Button Input 13

Continuous monitor of button state

int button_pin = 4; // pin used to read the button

void setup() {

pinMode(button_pin, INPUT);

Serial.begin(9600); // Button state is sent to host

}

void loop() {

int button;

button = digitalRead(button_pin);

if (button == HIGH) {

Serial.println("on");

} else {

Serial.println("off");

}

}

Serial monitor shows

a continuous stream

of “on” or “off”

This program does not control the LED

LWTL: Button Input 14

Programs for the LED/Button Circuit

1. Continuous monitor of button state

❖ Program is completely occupied by monitoring the button

❖ Used as a demonstration — not practically useful

2. Wait for button input

❖ Blocks execution while waiting

❖ May be useful as a start button

3. Interrupt Handler

4. All three programs use the same electrical circuit

LWTL: Button Input 15

Wait for button input
int button_pin = 4; // pin used to read the button

void setup() {

int start_click = LOW; // Initial state: no click yet

pinMode(button_pin, INPUT);

Serial.begin(9600);

while (!start_click) {

start_click = digitalRead(button_pin);

Serial.println("Waiting for button press");

}

}

void loop() {

int button;

button = digitalRead(button_pin);

if (button == HIGH) {

Serial.println("on");

} else {

Serial.println("off");

}

}

Same loop() function

as in the preceding

sketch

while loop

continues as long

as start_click is

FALSE

LWTL: Button Input 16

Programs for the LED/Button Circuit

1. Continuous monitor of button state

❖ Program is completely occupied by monitoring the button

❖ Used as a demonstration — not practically useful

2. Wait for button input

❖ Blocks execution while waiting

❖ May be useful as a start button

3. Interrupt Handler

❖ Most versatile

❖ Does not block execution

❖ Interrupt is used to change a flag that indicates state

❖ Regular code in loop function checks the sate of the flag

4. All three programs use the same electrical circuit

LWTL: Button Input 17

Interrupt handler for button input
int button_interrupt = 0; // Interrupt 0 is on pin 2 !!

int toggle_on = false; // Button click switches state

void setup() {

Serial.begin(9600);

attachInterrupt(button_interrupt, handle_click, RISING); // Register handler

}

void loop() {

if (toggle_on) {

Serial.println("on");

} else {

Serial.println("off");

}

}

void handle_click() {

static unsigned long last_interrupt_time = 0; // Zero only at start

unsigned long interrupt_time = millis(); // Read the clock

if (interrupt_time - last_interrupt_time > 200) { // Ignore when < 200 msec

toggle_on = !toggle_on;

}

last_interrupt_time = interrupt_time;

}

LWTL: Button Input 18

Interrupt handler for button input
int button_interrupt = 0; // Interrupt 0 is on pin 2 !!

int toggle_on = false; // Button click switches state

void setup() {

Serial.begin(9600);

attachInterrupt(button_interrupt, handle_click, RISING); // Register handler

}

void loop() {

if (toggle_on) {

Serial.println("on");

} else {

Serial.println("off");

}

}

void handle_click() {

static unsigned long last_interrupt_time = 0; // Zero only at start

unsigned long interrupt_time = millis(); // Read the clock

if (interrupt_time - last_interrupt_time > 200) { // Ignore when < 200 msec

toggle_on = !toggle_on;

}

last_interrupt_time = interrupt_time;

}

Interrupt handler must be registered when program

starts

The interrupt handler,

handle_click, is a user-written

function that is called when an

interrupt is detected

button_interrupt is the ID or

number of the interrupt. It must be

0 or 1
A RISING interrupt occurs when the

pin changes from LOW to HIGH

LWTL: Button Input 19

Interrupt handler for button input
int button_interrupt = 0; // Interrupt 0 is on pin 2 !!

int toggle_on = false; // Button click switches state

void setup() {

Serial.begin(9600);

attachInterrupt(button_interrupt, handle_click, RISING); // Register handler

}

void loop() {

if (toggle_on) {

Serial.println("on");

} else {

Serial.println("off");

}

}

void handle_click() {

static unsigned long last_interrupt_time = 0; // Zero only at start

unsigned long interrupt_time = millis(); // Read the clock

if (interrupt_time - last_interrupt_time > 200) { // Ignore when < 200 msec

toggle_on = !toggle_on;

}

last_interrupt_time = interrupt_time;

}

toggle_on is a global variable that

remembers the “state”. It is either true or

false (1 or 0).

The loop() function only checks the

state of toggle_on. The value of

toggle_on is set in the interrupt

handler, handle_click.

The value of toggle_on is flipped only

when a true interrupt even occurs. De-

bouncing is described in the next slide.

LWTL: Button Input 20

Interrupt handler for button input
int button_interrupt = 0; // Interrupt 0 is on pin 2 !!

int toggle_on = false; // Button click switches state

void setup() {

Serial.begin(9600);

attachInterrupt(button_interrupt, handle_click, RISING); // Register handler

}

void loop() {

if (toggle_on) {

Serial.println("on");

} else {

Serial.println("off");

}

}

void handle_click() {

static unsigned long last_interrupt_time = 0; // Zero only at start

unsigned long interrupt_time = millis(); // Read the clock

if (interrupt_time - last_interrupt_time > 200) { // Ignore when < 200 msec

toggle_on = !toggle_on;

}

last_interrupt_time = interrupt_time;

}

Value of a static variable is always

retained

Ignore events that occur in less than

200 msec from each other. These

are likely to be mechanical bounces.

Use long: the time value in

milliseconds can become

large

Clock time when current interrupt

occurs

Save current time as the new “last”
time

LWTL: Button Input 21

Other references

Ladyada tutorial

❖ Excellent and detailed

❖ http://www.ladyada.net/learn/arduino/lesson5.html

Arduino reference

❖ Minimal explanation

‣ http://www.arduino.cc/en/Tutorial/Button

❖ Using interrupts

‣ http://www.uchobby.com/index.php/2007/11/24/arduino-interrupts/

‣ http://www.arduino.cc/en/Reference/AttachInterrupt

